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LETTER TO THE EDITOR 

1 /a expansion for critical concentrations in the 
diluted spin glass 

A B Harris? 
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, 
Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel 

Received 16 June 1987 

Abstract. We study the threshold concentrations, p 4 ,  for critical behaviour at zero tem- 
perature in the correlation functions x'24'  for an lsing spin glass in which nearest-neighbour 
interactions randomly assume the values +J, 0, and - J  with respective probabilities p/2, 
1-p and p/2. Here ,y(")=[Z, (s ,~ , )~ ] , , ,  where ( )  denotes an average over the ground 
states for a fixed configuration of J and [ I,, an average over all such configurations. Due 
to frustration effects pc < p 2  < p4 < p6 . . . < pm, where p c  is the percolation threshold. Thus 
spin-glass theory with only x"' critical (at p = p 2 )  applies and the critical exponents along 
the T = 0 axis are the same as thermal critical exponents for p = 1. When the values + J  
and - J  are replaced by distributions of narrow width, the frustration is removed and 
percolation exponents are expected at p = p c .  

The use of the replica method [ 1,2] to treat the critical properties of quenched random 
systems has had a long history of varying success. When applied to ferromagnetic 
systems with weak disorder where randomness does not affect the qualitative nature 
of the thermodynamic phase, the results [3-51 have been seemingly quite satisfactory, 
in that they agreed with similar calculations not involving replicas [6-81. In contrast, 
the use of replicas [9] for spin-glass (SG) systems (for a review see [lo]), where 
randomness crucially affects the nature of the ordered phase, has led to a vast technology 
in which esoteric schemes [ 111 are employed to circumvent the instabilities [ 121 which 
plague the simpler calculations in the ordered phase. The calculations of critical 
exponents via the &-expansion renormalisation group [13, 141 are presumed to be 
correct, since they are based on calculations in the disordered phase, where replica- 
symmetry breaking need not be considered. With these facts in mind, one might 
imagine that a calculation of the critical behaviour of the diluted SG [ 151 in its disordered 
phase should be possible. The Hamiltonian for the model we consider is 

H = - ' C J  2 t j S J j  (1) 
t, 

where s, assumes the values +1 and -1 and each J,, = J,, is a random variable, non-zero 
only for nearest-neighouring sites i and j ,  which assumes the values -J ,  0, and + J  
with the respective probabilities p/2, 1 -p, and p/2. Qualitatively, we would expect 
the phase diagram for this diluted SG to be as shown in figure 1. This diagram has an 
obvious similarity to that for the randomly diluted Ising model studied some time ago 
by Stephen and Crest [16], who initiated a method of calculation from which the 

t Permanent address: Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA. 
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Figure 1. Phase diagram for the diluted SG as a function of temperature 7 and bond 
concentration p. Here SG denotes a phase with long-range SG order and pis the disordered 
phase. 

critical behaviour along and near the T = 0 axis could be obtained. They found that 
the critical exponents along the T=O axis were those of the percolation problem 
[ 17, 181, since at T = 0 the Ising model correlation functions x ' ~ '  = Z, [ ( S J , ) ~ ] ] , ~ ,  where 
( ) denotes an average over the ground states for a fixed configuration of J and [ Iav 
denotes an average over all such configurations, reduce to the pair connectedness 
correlation function of the percolation problem. 

Subsequently, Aharony [ 191 and Giri and Stephen [20] used the Stephen and Grest 
[ 161 formalism to study the critical behaviour of the diluted SG model along the T = 0 
axis. Both groups concluded that the critical properties of the diluted SG when the 
ordered phase was approached along the T = 0 axis were described by the f-state Potts 
model. Basically, this result came about because, instead of all x ' ~ )  being simul- 
taneously critical (as is the case for the dilute Ising model [16]), only f of these, i.e. 
the x ' ~ )  with q even, were considered to be simultaneously critical at the percolation 
threshold, p = p c .  I t  was soon realised, however [20-221, that these calculations did 
not properly treat the subtle frustration effects [23] within this model typified by the 
system of figure 2. Half the configurations of this system are unfrustrated (i.e. the 
product of J around the square is positive) and cause no problems for the replica 
method. However, for the other half of the configurations the product of the J is 
negative, the ground state becomes non-trivially degenerate, as shown in figure 2, and 
the ground-state correlations assume the values given in the caption to figure 2. In 
particular note that spins across a diagonal are completely uncorrelated when the 
square is frustrated. Similar comments apply for more complicated systems. These 
ground-state effects are hard to reproduce within the replica formalism [ 19,201, 
although for a small system one can take the replica limits so as to obtain correct 
quenched averages. Giri and Stephen [20] stated that their replica calculation led to 
a SG state with 'only a small amount of frustration'. Aharony and Pfeuty [22] recognised 
this equivalence to the $state Potts model to be incorrect, due to the incorrect order 
of taking the n + O  and T+O limits [21]. They concluded that in the absence of 
frustration this identification of the dilute SG with the +-state Potts model should hold. 

t t  * t + -  - + 

- - - U + +  t t + 
4 3 

IUI (bl 

Figure 2. ( a )  A configuration with one antiferromagnetic bond ( A )  causing frustration in 
a single plaquette. All interactions (bonds) have the same magnitude. ( b )  The four ground 
states of the system for spin number 1 up, from which one gets (ala2)= - 4 ,  (a,a3)=0, 
(u,a,)=f, etc. 
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Nevertheless, the actual nature of the critical 
attendant frustration remainded unclear. 

The object of the present letter is to show 
model (1) as the ordered phase is approached 

behaviour of the model (1) with its 

that (i)  the critical properties of the 
by increasing p along the T = 0 axis 

are the same as those for the thermal SG transition at p = 1 for which &-expansion 
results exist [ 13, 141, and that (i i)  an unfrustrated version of (1) at T = 0 is in the same 
universality class as ordinary percolation. 

To start, we argue that all the x ( 2 4 )  have different critical threshold concentrations, 
which are greater than p c .  Since the density of squares is finite at p = p c ,  it is intuitively 
clear that frustration prevents SG order from propagating over the incipient infinite 
cluster at p = p c .  To quantify this observation, we use a l/a expansion where a = z - 1 ,  
where z is the coordination number of the pure lattice, to calculate the threshold 
concentration p2q  where x(29' diverges. We consider the low concentration expansion 
for ,y(2q)  which we write in the form 

p )  = w( d,  r)pfl'1')x:2qJ(r) (2) 
I' 

where the sum is over all topologically inequivalent connected clusters r, where W ( d ,  r) 
is the number of ways per site a cluster topologically equivalent to r can be formed 
on a hypercubic lattice in d spatial dimensions, n ( T )  is the number of bonds in the 
cluster I', and xL2q)(r) is the cumulant value of the susceptibility for the cluster r 
which is obtained recursively from the bare susceptibility by 

where ,y(q)(I') = [Z,,,,. (s,~,)~]],,. Aharony and Binder [23] estimated p 2  from the series 
(2) for x"', but they did not have enough terms to determine whether or not p 2  differed 
from p c .  We analyse (2) for general q by considering the large-a limit. A simplifying 
feature at large a is that W ( d ,  r) /anc'. '  contains a relative factor ( l / c ~ ) ~  for each loop 
of 2k bonds [24,25]. Similarly, corrections in W ( d ,  I?) from values on the Cayley tree 
(which has no loops) can be classified in powers of l / a  depending on the loops 
involved implicitly in the corrections. Another simplification is that the cumulant 
susceptibility in (2) vanishes for any diagram with more than two free ends. Thus to 
order ( l / ~ ) ~  we only need to consider contributions from the diagrams shown in figure 
3, whose weights W ( d , r )  to this order are given in table 1 .  A calculation of the 
susceptibilities x(2q'(r) follows closely from the discussion of Aharony and Binder 
[23] as illustrated in figure 2 and the results are given in table 1 for the relevant 
diagrams shown in figure 3. The x(~""( p )  have trivial properties (,y('"')( p )  = 1 )  due 
to the fact that J is governed by a probability distribution which is even in J. 

We now collect the results into the form x " ~ ' (  p )  = X,, a,(2q, a ) p n ,  with 

a-"u,(2q, a) = [(a+ l ) /a ] (  1 - n / a 2  -2n/a3)  + (1 - 3 /a ) [ -~+$( f )24 ]n /a2  

+ [ -15 + 2(f)'" + 2(f)"]1n/o~ + O( 1/a4)  (4) 

where we have dropped terms independent of n in the corrections to the leading term, 
since they will not affect our results. It appears that all the a, are positive, at least 
for large a. 

Accordingly, we may determine p Z q  by p Z q  = lim,,,[l/a,(2q, m)]"", so that 

p Z q  = ( I / ~ ) {  1 + ( 1/(T2)[$ -f($p]+ ( i/a3)[y+;(;)24 -2(f)24 -2(;)2q} ( 5 )  
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Figure 3. Clusters which potentially contribute to the susceptibilities up to order l/v3. 
Clusters ( a ) - ( f )  have contributions given in table 1 which contribute to (4). Clusters ( 8 )  
and ( h )  give contributions to (4) which are independent of n and therefore are dropped. 
Clusters ( i ) - ( k )  have zero cumulant susceptibilities and are not listed in table 1. 

Table 1. Weights and cumulant susceptibilities for the clusters of figure 3. 

Diagram, I- Weight" W ( T )  x : * ~ ' ) (  I-) 

2u h +MI + 3  

2 u h + r r ~ + 3  

h t nt + 3  

-3 

-3 + (p 
-3 + (f," 
-3 

Not needed 

( h )  * u " + 3  Not needed 

Correct to order l/u' for large n or m + k. 
See [22]. Correction terms independent of n are omitted. 
To count all contributions, set k + m = n and sum k from 1 to n - 1. (This takes account 

that the symmetry factor of the diagram for k = m differs from that for k # m.)  
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which should be compared to the result [26] for the percolation threshold p c :  

p c  = ( l / a ) (  1 + 5/2a2+ 15/2a3). (6) 

p c < f Z < f 4 < f 6 < - .  * < f = r .  (7) 

Our result ( 5 )  shows that 

For d = 6  ( a =  l l ) ,  (6) and ( 5 )  give pc=0.0933, p2=0.0939 and p,=O.O942. In this 
calculation one can see quite clearly the role of frustrated configurations in reducing 
the magnitude of aZqr which causes p Z q  to increase with increasing q. For the dilute 
Ising model limq+o ,y(4' becomes equal to the percolation correlation function even for 
T # 0 [27]. Here pc  < p4+o because for frustrated plaquettes (s,s,) can vanish even when 
sites i and j are connected, as illustrated in figure 2. This can also be seen from table 
1 ,  where the ,yyqJ for q + O  reproduce percolation, except for diagrams ( c )  and (f) 
where such correlations actually vanish for frustrated configurations. 

What conclusions can be drawn from the result ( 5 ) ?  As p is increased through the 
value p = p 2 ,  the , y '2q)  with q > 1 are not critical because p 2 q  > p 2 .  Thus, in contrast 
to the dilute Ising model [ 161 where all the ,y(4J are simultaneously critical for p = p c ,  
here only ,y") becomes critical as p approaches p 2 .  Therefore the critical properties 
of this model are the same as in the usual thermal transition for the sc  at p = 1 for 
which only ,y") is critical [13]. In a sense frustration mimics temperature in that it 
leads to an unstable perturbation which drives the system away from the fixed point 
where all the ,y(24) are equal. It must be admitted that the values of the exponents 
determined by Aharony and Binder seem to be definitely smaller than those for the 
SG at p = 1 as determined by high-temperature series [28]. However, the series for 
T=O is rather short (having eight terms) and it could easily be influenced by the 
crossover from the ;-state Potts model fixed point which is nearby. (Note that, although 
the p z q  do depend on q, this dependence is rather weak.) 

Furthermore, one can ask under what conditions it might be possible to attain 
simultaneous criticality of all the ,y'24). This will happen if there is no frustration [22], 
which is the case if we take each bond to have a quenched random exchange constant 
J governed by the distribution 

(8) 

where f ( J )  = 1/(2A) for IJ - 11 < A  and f ( J )  = 0 otherwise, with A<< 1. In  this case, 
frustrated configurations occur with essentially zero probability [ 291, since they require 
a precise balance of J in different branches of a loop. Thus at T = 0 one has I ( S J , ) ~  = 1 
for essentially all configurations. In this case, all the , y ( 2 q )  receive unit contributions 
from sites which are in the same cluster and zero contributions otherwise. As a result, 
,y(2q' is equivalent to the percolation pair-connectedness correlation function. It is 
then clear that the critical properties of the model (8) for T = 0 are the same as those 
of the percolation problem [ 17,181. Thus we see no simple scenario in which one can 
identify the bond-diluted SG with the $-state Potts model. However, our discussion 
does indicate another interesting question, namely it would be of interest to discuss 
the crossover which must occur in the model (8) as the temperature is raised from 0 
to the order of A<< 1 .  When the temperature is of order A, then averages over a single 
ground state will effectively be replaced by averages over the frustrated plaquettes. 
Note that this crossover occurs in the variable (T/A) and not in an exponential variable 
exp(-J/ T ) ,  as occurs in the diluted Ising model [ 161. In fact, it is this crossover which 
ultimately may have to be understood in order to deal properly with the SG phase. 

P ( J )  = ( 1  - p  )6(J)+pf(J) /2+pf(-J) /2  
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